In-class Exercise 3: Analytical Mapping

pacman::p_load(tmap, tidyverse, sf)
NGA_wp <- read_rds("data/rds/NGA_wp.rds")

3 Basic Choropleth Mapping

3.1 Visualising Distribution of Non-functional Water Point

p1 <- tm_shape(NGA_wp) + 
  tm_fill("wp_functional", 
          n=10,
          style = "equal",
          palette = "Blues") + 
  tm_borders(lwd = 0.1,
             alpha = 1) + 
  tm_layout(main.title = "Distribution of functional water by LGAs",
            legend.outside = FALSE)
p2 <- tm_shape(NGA_wp) +
  tm_fill("total_wp",
          n = 10,
          style = "equal",
          palette = "Blues") +
  tm_borders(lwd = 0.1,
             alpha = 1) +
  tm_layout(main.title = "Distribution of total  water point by LGAs",
            legend.outside = FALSE)

For palette, it should be “Reds”, “Blues” not “Red”, “Blue”.

tmap_arrange(p2, p1, nrow=1)

4 Choropleth Map for Rates

4.1 Deriving Proportion of Functional Water Points and Non-Functional Water Points

When you change from xxx to %, you will realise that…

NGA_wp <- NGA_wp %>%
  mutate(pct_functional = wp_functional/total_wp) %>%
  mutate(pct_nonfunctional = wp_nonfunctional/total_wp)

In the code chunk above, mutate() from dplyr package is used to derive 2 fields, namely pct_functional and pct_nonfunctional.

4.2 Plotting Map of Rate

tm_shape(NGA_wp) + 
  tm_fill("pct_functional",
          n = 10,
          style = "equal",
          palette = "Reds") +
  tm_borders(lwd = 0.1,
              alpha = 1) +
  tm_layout(main.title = "Rate map of functional water point by LGAs",
            legend.outside = TRUE)

5 Extreme Value Maps

Extreme value maps are variations of common choropleth maps where the classification is designed to highlight extreme values at the lower and upper end of the scale, with the goal of identifying outliers. These maps were developed in the spirit of spatializing EDA, i.e., adding spatial features to commonly used approaches in non-spatial EDA (Anselin 1994).

5.1 Percentile Map

The percentile map is a special type of quantile map with six specific categories: 0-1%,1-10%, 10-50%,50-90%,90-99%, and 99-100%. The corresponding breakpoints can be derived by means of the base R quantile command, passing an explicit vector of cumulative probabilities as c(0,.01,.1,.5,.9,.99,1). Note that the begin and endpoint need to be included.

5.1.1 Data Preparation

Step 1: Exclude records with NA by using the code chunk below.

NGA_wp <- NGA_wp %>%
  drop_na()

Step 2: Creating customised classification and extracting values.

percent <- c(0,.01,.1,.5,.9,.99,1)
var <- NGA_wp["pct_functional"] %>%
  st_set_geometry(NULL)
quantile(var[,1], percent)
       0%        1%       10%       50%       90%       99%      100% 
0.0000000 0.0000000 0.2169811 0.4791667 0.8611111 1.0000000 1.0000000 

5.1.2 Why Write Functions?

Has 3 big advantages over copy-and-paste:

  • Can give function an evocative name that makes your code easier to understand.

  • When requirements change, you only need to update code in 1 place.

  • Eliminate the chance of making incidental mistakes when copying and pasting.

5.1.3 Creating the get.var function

Firstly, we will write an R function as shown below to extract a variable (i.e. wp_nonfunctional) as a vector out of an sf data.frame.

  • arguments:
    • vname: variable name (as character, in quotes)
    • df: name of sf data frame
  • returns:
    • v: vector with values (without a column name)
get.var <- function(vname,df) {
  v <- df[vname] %>% 
    st_set_geometry(NULL)
  v <- unname(v[,1])
  return(v)
}

5.1.4 A Percentile Mapping Function

percentmap <- function(vnam, df, legtitle=NA, mtitle="Percentile Map"){
  percent <- c(0,.01,.1,.5,.9,.99,1)
  var <- get.var(vnam, df)
  bperc <- quantile(var, percent)
  tm_shape(df) +
  tm_polygons() +
  tm_shape(df) +
     tm_fill(vnam,
             title=legtitle,
             breaks=bperc,
             palette="Blues",
          labels=c("< 1%", "1% - 10%", "10% - 50%", "50% - 90%", "90% - 99%", "> 99%"))  +
  tm_borders() +
  tm_layout(main.title = mtitle, 
            title.position = c("right","bottom"))
}

5.1.5 Test drive the percentile mapping function

percentmap("total_wp", NGA_wp)

5.2 Box Map

In essence, a box map is an augmented quartile map, with an additional lower and upper category. When there are lower outliers, then the starting point for the breaks is the minimum value, and the second break is the lower fence. In contrast, when there are no lower outliers, then the starting point for the breaks will be the lower fence, and the second break is the minimum value (there will be no observations that fall in the interval between the lower fence and the minimum value).

ggplot(data = NGA_wp,
       aes(x = "",
           y = wp_nonfunctional)) +
  geom_boxplot()

  • Displaying summary statistics on a choropleth map by using the basic principles of boxplot.

  • To create a box map, a custom breaks specification will be used. However, there is a complication. The break points for the box map vary depending on whether lower or upper outliers are present.

5.2.1 Creating the boxbreaks function

boxbreaks <- function(v,mult=1.5) {
  qv <- unname(quantile(v))
  iqr <- qv[4] - qv[2]
  upfence <- qv[4] + mult * iqr
  lofence <- qv[2] - mult * iqr
  # initialize break points vector
  bb <- vector(mode="numeric",length=7)
  # logic for lower and upper fences
  if (lofence < qv[1]) {  # no lower outliers
    bb[1] <- lofence
    bb[2] <- floor(qv[1])
  } else {
    bb[2] <- lofence
    bb[1] <- qv[1]
  }
  if (upfence > qv[5]) { # no upper outliers
    bb[7] <- upfence
    bb[6] <- ceiling(qv[5])
  } else {
    bb[6] <- upfence
    bb[7] <- qv[5]
  }
  bb[3:5] <- qv[2:4]
  return(bb)
}

5.2.2 Creating the get.var function

get.var <- function(vname,df) {
  v <- df[vname] %>% st_set_geometry(NULL)
  v <- unname(v[,1])
  return(v)
}

5.2.3 Test the newly created function

var <- get.var("wp_nonfunctional", NGA_wp) 
boxbreaks(var)
[1] -56.5   0.0  14.0  34.0  61.0 131.5 278.0

5.2.4 Boxmap function

boxmap <- function(vnam, df, 
                   legtitle=NA,
                   mtitle="Box Map",
                   mult=1.5){
  var <- get.var(vnam,df)
  bb <- boxbreaks(var)
  tm_shape(df) +
    tm_polygons() +
  tm_shape(df) +
     tm_fill(vnam,title=legtitle,
             breaks=bb,
             palette="Blues",
          labels = c("lower outlier", 
                     "< 25%", 
                     "25% - 50%", 
                     "50% - 75%",
                     "> 75%", 
                     "upper outlier"))  +
  tm_borders() +
  tm_layout(main.title = mtitle, 
            title.position = c("left",
                               "top"))
}
tmap_mode("plot")
tmap mode set to plotting
boxmap("wp_nonfunctional", NGA_wp)
Warning: Breaks contains positive and negative values. Better is to use
diverging scale instead, or set auto.palette.mapping to FALSE.

5.2.5 Recode zero

The code chunk below is used to recode LGAs with zero total water point into NA.

NGA_wp <- NGA_wp %>%
  mutate(wp_functional = na_if(
    total_wp, total_wp < 0))